首页> 外文OA文献 >Development of novel electrode materials for the electrocatalysis of oxygen-transfer and hydrogen-transfer reactions
【2h】

Development of novel electrode materials for the electrocatalysis of oxygen-transfer and hydrogen-transfer reactions

机译:电催化氧转移和氢转移反应的新型电极材料的开发

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The fundamental aspects involved in the electrocatalysis of anodic O-transfer reactions and cathodic H-transfer reactions are studied. The main focus of the study is to increase our knowledge of the processes controlling the transfer reactions and apply this knowledge to the development of novel electrode materials for use as electrochemical sensors. The transfer reactions have prerequisite steps of reactant adsorption at the electrode surface as well as adsorption of O atoms, for O-transfer reactions, and H atoms, for H-transfer reactions. Investigations of anodic O-transfer reactions reveal that MnO2 film electrodes show improved response for dimethyl sulfoxide (DMSO) oxidation as compared to the Au substrate. Doping of the MnO2 film electrodes with Fe(III) enhances electrocatalytic activity for DMSO oxidation. Thermally prepared RuO2 films provide an electrode material that not only exhibits electrocatalytic activity for O-transfer reactions but shows mechanical and chemical stability as well. Doping of the RuO2 film electrodes with Fe(III) further increases activity and provides an electrochemical sensor with detection capabilities for DMSO, methionine, and cysteine in the range of 3.2 x 10-4 mM. Reasons for the increase in activity, caused by doping of the metal oxide films with Fe(III), are attributed to separation of surface sites involved in the adsorption processes required for O-transfer reactions. An investigation of H-transfer reactions, specifically nitrate reduction, initially examines various metals for activity to determine candidates for use in alloy electrodes. The Sb10Sn20Ti 70, Cu63Zn37, and the Cu25Ni75 alloy electrodes all show improved response for nitrate reduction as compared to their pure component metals. Reasons for the improved activity are speculated to involve the separation of surface adsorption sites for the processes involved in nitrate reduction. Further examination of Cu-Ni alloys reveals that the nitrate reduction occurs via an 8 e- process at the Cu75Ni25 alloy electrode and a 6 e - process at the Cu50Ni50 and the Cu 25Ni75 alloy electrodes. Flow injection data obtained using Cu50Ni50 and Cu25Ni75 electrodes exhibit detection limits for nitrate of 0.95 muM and 0.60 muM, respectively.
机译:研究了阳极O-转移反应和阴极H-转移反应的电催化的基本方面。该研究的主要重点是增加我们对控制转移反应过程的了解,并将该知识应用于开发用作电化学传感器的新型电极材料。转移反应具有反应物在电极表面的吸附以及O转移(对于O转移反应)和H原子(对于H转移反应)吸附的先决条件。阳极O转移反应的研究表明,与Au衬底相比,MnO2薄膜电极对二甲基亚砜(DMSO)的氧化反应有所改善。用Fe(III)掺杂MnO2薄膜电极可增强DMSO氧化的电催化活性。热制备的RuO2薄膜提供的电极材料不仅对O转移反应具有电催化活性,而且还具有机械和化学稳定性。用Fe(III)掺杂RuO2薄膜电极可进一步提高活性,并为电化学传感器提供对DMSO,蛋氨酸和半胱氨酸的检测能力,范围为3.2 x 10-4 mM。由金属氧化物膜中的Fe(III)掺杂导致活性增加的原因归因于O转移反应所需的吸附过程中涉及的表面部位的分离。对H转移反应(特别是硝酸盐还原)的研究首先检查了各种金属的活性,以确定用于合金电极的候选材料。与它们的纯组分金属相比,Sb10Sn20Ti 70,Cu63Zn37和Cu25Ni75合金电极均表现出改善的硝酸盐还原响应。推测活性提高的原因包括涉及硝酸盐还原过程中表面吸附位点的分离。对Cu-Ni合金的进一步检查表明,硝酸盐还原是通过在Cu75Ni25合金电极上进行8 e-过程,在Cu50Ni50和Cu 25Ni75合金电极上进行6 e-过程而发生的。使用Cu50Ni50和Cu25Ni75电极获得的流动注射数据显示硝酸盐的检出限分别为0.95μM和0.60μM。

著录项

  • 作者

    Simpson, Brett Kimball;

  • 作者单位
  • 年度 2002
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号